Modeling time to detection for observers searching for targets in cluttered backgrounds

نویسندگان

  • Harald Ruda
  • Magnús Snorrason
چکیده

The purpose of this work is to provide a model for the average time to detection for observers searching for targets in photorealistic images of cluttered scenes. The proposed model builds on previous work that constructs a fixation probability map (FPM) from the image. This FPM is constructed from bottom-up features, such as local contrast, but also includes top-down cognitive effects, such as the location of the horizon. The FPM is used to generate a set of conspicuous points that are likely to be fixation points, along with initial probabilities of fixation. These points are used to assemble fixation sequences. The order of these fixations is clearly crucial for determining the time to fixation. Recognizing that different observers (unconsciously) choose different orderings of the conspicuous points, the present model performs a Monte-Carlo simulation to find the probability of fixating each conspicuous point at each position in the sequence. The three main assumptions of this model are: the observer can only attend to the area of the image being fixated, each fixation has an approximately constant duration, and there is a short term memory for the locations of previous fixation points. This fixation point memory is an essential feature of the model, and the memory decay constant is a parameter of the model. Simulations show that the average time to fixation for a given conspicuous point in the image depends on the distribution of other conspicuous points. This is true even if the initial probability of fixation for a given point is the same across distributions, and only the initial probability of fixation of the other points is distributed differently.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salient regions detection in satellite images using the combination of MSER local features detector and saliency models

Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection.  In most of these met...

متن کامل

Cutting through the clutter: searching for targets in evolving complex scenes.

We evaluated the use of visual clutter as a surrogate measure of set size effects in visual search by comparing the effects of subjective clutter (determined by independent raters) and objective clutter (as quantified by edge count and feature congestion) using "evolving" scenes, ones that varied incrementally in clutter while maintaining their semantic continuity. Observers searched for a targ...

متن کامل

A Directionally Selective Small Target Motion Detecting Visual Neural Network in Cluttered Backgrounds

Discriminating targets moving against a cluttered background is a huge challenge, let alone detecting a target as small as one or a few pixels and tracking it in flight. In the fly’s visual system, a class of specific neurons, called small target motion detectors (STMDs), have been identified as showing exquisite selectivity for small target motion. Some of the STMDs have also demonstrated dire...

متن کامل

Analysis and Modeling of Fixation Point Selection for Visual Search in Cluttered Backgrounds

Hard-to-see targets are generally only detected by human observers once they have been fixated. Hence, understanding how the human visual system allocates fixation locations is necessary for predicting target detectability. Visual search experiments were conducted where observers searched for military vehicles in cluttered terrain. Instantaneous eye position measurements were collected using an...

متن کامل

Determining Effective Features for Face Detection Using a Hybrid Feature Approach

Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999